今天之间网归一为大家解答以上的问题。贾宪三角手抄报,贾宪三角相信很多小伙伴还不知道,现在让我们一起来看看吧!
1、杨辉三角,又称贾宪三角形,帕斯卡三角形,是二项式系数在三角形中的一种几何排列。
2、在欧洲,这个表叫做帕斯卡三角形。
3、帕斯卡(1623----1662)是在1654年发现这一规律的,比杨辉要迟393年,比贾宪迟600年。
4、 前提:端点的数为1. 每个数等于它上方两数之和。
5、 每行数字左右对称,由1开始逐渐变大。
6、 第n行的数字有n项。
7、 第n行数字和为2n-1。
8、 第n行的m个数可表示为 C(n-1,m-1),即为从n-1个不同元素中取m-1个元素的组合数。
9、 第n行的第m个数和第n-m+1个数相等 ,为组合数性质之一。
10、 每个数字等于上一行的左右两个数字之和。
11、可用此性质写出整个杨辉三角。
12、即第n+1行的第i个数等于第n行的第i-1个数和第i个数之和,这也是组合数的性质之一。
13、即 C(n+1,i)=C(n,i)+C(n,i-1)。
14、 (a+b)n的展开式中的各项系数依次对应杨辉三角的第(n+1)行中的每一项。
15、 将第2n+1行第1个数,跟第2n+2行第3个数、第2n+3行第5个数……连成一线,这些数的和是第4n+1个斐波那契数;将第2n行第2个数(n>1),跟第2n-1行第4个数、第2n-2行第6个数……这些数之和是第4n-2个斐波那契数。
16、 将各行数字相排列,可得11的n-1(n为行数)次方:1=11^0; 11=11^1; 121=11^2……当n>5时会不符合这一条性质,此时应把第n行的最右面的数字"1"放在个位,然后把左面的一个数字的个位对齐到十位... ...,以此类推,把空位用“0”补齐,然后把所有的数加起来,得到的数正好是11的n-1次方。
17、以n=11为例,第十一行的数为:1,10,45,120,210,252,210,120,45,10,1,结果为 25937424601=11^10。
本文就为大家分享到这里,希望大家看了会喜欢。